Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.18.20214221

ABSTRACT

ObjectivesSudden loss of smell is a very common symptom of coronavirus disease 19 (COVID-19). This study characterizes the structural and metabolic cerebral correlates of dysosmia in patients with COVID-19. MethodsStructural brain magnetic resonance imaging (MRI) and positron emission tomography with [18F]-fluorodeoxyglucose (FDG-PET) were prospectively acquired simultaneously on a hybrid PET-MR in twelve patients (2 males, 10 females, mean age: 42.6 years, age range: 23-60 years) with sudden dysosmia and positive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on nasopharyngeal swab specimens. FDG-PET data were analysed using a voxel-based approach and compared with that of a group of healthy subjects. ResultsBilateral blocking of the olfactory cleft was observed in six patients, while subtle olfactory bulb asymmetry was found in three patients. No MRI signal abnormality downstream of the olfactory tract was observed. Heterogeneous (decrease or increase) glucose metabolism abnormalities were observed in core olfactory and high-order neocortical areas. A modulation of regional cerebral glucose metabolism by the severity and the duration of COVID-19-related dysosmia was disclosed using correlation analyses. ConclusionsThis PET-MR study shows that sudden loss of smell in COVID-19 is not related to central involvement due to SARS-CoV-2 neuroinvasiveness. Loss of smell is associated with heterogeneous cerebral metabolic changes in core olfactory and high-order cortical areas likely related to combined processes of deafferentation and active functional reorganisation secondary to the lack of olfactory stimulation.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.21.163394

ABSTRACT

Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage-immunoprecipitation sequencing. Seroprevalence of antibodies to endemic HCoVs ranged between ~4 and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2 cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and non-human coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.27.20114363

ABSTRACT

BackgroundPost-mortem studies can provide important information for understanding new diseases and small autopsy case series have already reported different findings in COVID-19 patients. MethodsWe evaluated whether some specific post-mortem features are observed in these patients and if these changes are related to the presence of the virus in different organs. Complete macroscopic and microscopic autopsies were performed on different organs in 17 COVID-19 non-survivors. Presence of SARS-CoV-2 was evaluated with immunohistochemistry (IHC) in lung samples and with real-time reverse-transcription polymerase chain reaction (RT-PCR) test in lung and other organs. ResultsPulmonary findings revealed early-stage diffuse alveolar damage (DAD) in 15 out of 17 patients and microthrombi in small lung arteries in 11 patients. Late-stage DAD, atypical pneumocytes and/or acute pneumonia were also observed. Four lung infarcts, two acute myocardial infarctions and one ischemic enteritis were observed. There was no evidence of myocarditis, hepatitis or encephalitis. Kidney evaluation revealed the presence of hemosiderin in tubules or pigmented casts in most patients. Spongiosis and vascular congestion were the most frequently encountered brain lesions. No specific SARS-CoV-2 lesions were observed in any organ. IHC revealed positive cells with a heterogeneous distribution in the lungs of 11 of the 17 (65%) patients; RT-PCR yielded a wide distribution of SARS-CoV-2 in different tissues, with 8 patients showing viral presence in all tested organs (i.e. lung, heart, spleen, liver, colon, kidney and brain). ConclusionsIn conclusion, autopsies revealed a great heterogeneity of COVID-19-related organ injury and the remarkable absence of any specific viral lesions, even when RT-PCR identified the presence of the virus in many organs.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.04.20090316

ABSTRACT

ImportanceThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to have potential neuro-invasiveness that might lead to acute brain disorders or contribute to respiratory distress in patients with coronavirus disease 2019 (COVID-19). Brain magnetic resonance imaging (MRI) data in COVID-19 patients are scarce due to difficulties to obtain such examination in infected unstable patients during the COVID-19 outbreak. ObjectiveTo investigate the occurrence of structural brain abnormalities in non-survivors of COVID-19 in a virtopsy framework. DesignProspective, case series study with postmortem brain MRI obtained early (<24h) after death. SettingMonocentric study. ParticipantsFrom 31/03/2020 to 24/04/2020, consecutive decedents who fulfilled the following inclusion criteria were included: death <24 hours, SARS-CoV-2 detection on nasopharyngeal swab specimen, chest computerized tomographic (CT) scan suggestive of COVID-19, absence of known focal brain lesion, and MRI compatibility. Main Outcome(s) andMeasure(s)Signs of acute brain injury and MRI signal abnormalities along the olfactory tract and brainstem were searched independently by 3 neuroradiologists, then reviewed with neurologists and clinicians. ResultsAmong the 62 patients who died from COVID-19 during the inclusion period, 19 decedents fulfilled inclusion criteria. Subcortical micro- and macro-bleeds (2 decedents), cortico-subcortical edematous changes evocative of posterior reversible encephalopathy syndrome (PRES, one decedent), and nonspecific deep white matter changes (one decedent) were observed. Asymmetric olfactory bulbs were found in 4 other decedents without downstream olfactory tract abnormalities. No brainstem MRI signal abnormality. Conclusions and RelevancePostmortem brain MRI demonstrates hemorrhagic and PRES-related brain lesions in non-survivors of COVID-19 that might be triggered by the virus-induced endothelial disturbances. SARS-CoV-2-related olfactory impairment seems to be limited to olfactory bulbs. The absence of brainstem MRI abnormalities does not support a brain-related contribution to respiratory distress in COVID-19. Key PointsO_ST_ABSQuestionC_ST_ABSIs there common brain MRI abnormalities patterns in non-survivors of coronavirus disease 2019 ? FindingsIn a case series of 19 non-survivors of severe COVID-19 disease, early postmortem brain MRI demonstrated patterns evocative of intracranial vasculopathy in 4 decedents: subcortical micro- and macro-bleeds (2 decedents), cortico-subcortical edematous changes evocative of posterior reversible encephalopathy syndrome (PRES, one decedent), and nonspecific deep white matter changes (one decedent). Asymmetric olfactory bulbs were found in 4 other decedents but without downstream olfactory tract abnormalities. MeaningPostmortem brain MRI demonstrates hemorrhagic and PRES-related brain lesions in non-survivors of COVID-19 that might be triggered by virus-induced endothelial disturbances.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL